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ABSTRACT 

P h y s i c a l  s o l u t i o n s  t o  convex s c a l a r  c o n s e r v a t i o n  l a w s  s a t i s f y  a one-sided 

L i p s c h i t z  c o n d i t i o n  (OSLC) t h a t  enforces  both t h e  e n t r o p y  c o n d i t i o n  and t h e i r  

v a r i a t i o n  boundedness. Cons is tency  with t h i s  c o n d i t i o n  i s  t h e r e f o r e  d e s i r a b l e  

f o r  a numerical  scheme and was proved f o r  bo th  t h e  Godunov and t h e  Lax- 

F r i e d r i c h s  scheme--also, i n  a weakened v e r s i o n ,  € o r  t h e  Roe scheme, a l l  of 

them being only f i r s t  o r d e r  accura te .  A new, f u l l y  second o r d e r  scheme is 

i n t r o d u c e d  h e r e ,  which i s  c o n s i s t e n t  wi th  t h e  OSLC. The modif ied e q u a t i o n  is 

c o n s i d e r e d  and shows i n t e r e s t i n g  f e a t u r e s .  Another second o r d e r  scheme is  

t h e n  cons idered  and numerical  r e s u l t s  are d i s c u s s e d .  
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integisble) fuc t ion  u(z), it makes sense to consider tbe  one-sided Lipschitz semi- 
norm: 

c 

t 

1. The  OSLC for Convex C o n s e n a t i o n  Laws. For a given (sap lo call^^ 

where a+ = max(0,’a)). 44 - 4 Y )  
)+ 

If v is a decreasing function, then p ( v )  = 0. Conversely, if u has increasing jumps, 

then p(v) = +w. 

It has been known for a long time [7], that the physical solutions to a scalar 

conservation law: 

with a (strictly) convex flux function: 

(1.3) f ” (u )  2 Q > 0, 

satisfy: 

(for t > 0 and z # y), 1 < -  4, 4 - 4 t I  Y) 
2 - Y  - at’ 

that is, in terms of the semi-norm: 

1 
p ( u ( t , - ) )  5 - for t > 0. at 

In particular, the semi-norm of the solution at  time t > 0 is always finite, even 

when the semi-norm of the initial data is infinite. In other words, any increasing 

discontinuity introduced in the initial data is immediately spread out -and becomes 

a rarefaction wave - and then only decreasing jumps, or shock waves, can appear. 

This is precisely the correct entropy condition for convex conservation laws. It is 

therefore automatically enforced by the OSLC (1.5). 

Moreover, the total variation boundedness of the solutions (a well known prop- 

erty of any scalar conservation law) is also enforced by the OSLC (1.5): Let us 
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consider, for simplicity, the initial value problem associated with (1.9): with peri- 

odic boundary conditions: 

(1.6) u( t ,O)  = u ( t ,  L ) , W  > 0, 

where L > 0 is the period. Then the following estimate 

(1.7) TV(u( t ,  e)) 5 2Lp(u(t ,  ,))  5 2 4 4 - 1  

holds, as a consequence of the following lemma: 

LEMMA 1. Let v(z )  be a locally integrable function of period L ,  then 

Proo/. The proof is given when v is smooth and can be easily generalized by a 

standard density argument. We have: 

By the definition of piv), we have: ~'(5) 5 p(v) and thus Iv'(x)-p(v)l = p(v)-v'(z).  

Therefore: T V ( v )  5 so [2p(v)  - v'(z)]dz = 2Lp(v) - so v'(z)dz = 2Lp(v )  (since v 

is periodic). Q.E.D. 

L L 

So, at, i e z t  for the periodic boundary problem, (in fact, also for the Cauchy 

problem), the OSLC enforces both entropy consistency and total variation bound- 

edness. 

As stated in (1 .5 ) ,  the OSLC is not entirely satisfying, since (at)-' blows up 

A more refined estimate can be quite easily deduced for when t approaches 0. 

p ( u ( t ,  .)) through the viscosity method: 
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and in particular, 

(1.10) p(u(t ,  .)I I p(u(3,  a ) ) ,  f o r  t 2 s 2 0. 

We do noteclaim that this is a new result. 

Before proving this proposition, let us notice that, when p(u(0,  e ) )  is finite (in 

particular when u(0,  z) is smooth), then p ( u ( t ,  e ) )  is uniformly bounded in time. 

Proof(sketch) Let ~ " ( t ,  5) be the (presumably unique and smooth) solution to: 

(1.11) u: + f(UZ) = uZz. 

A trivial computation leads to: 

2 e  d 
dt -p(u'(t, a ) )  5-v b (4 4)  (1.12) 

that is (after integration) 

(1.13) 

Then (1.10) is obtained when E - 0. 

p(u'(t, .)) 5 (p(u"(s, a ) ) - '  + a(t - s))-' for t 2 s 2 0. 

Q.E.D. 

11. Convergence of OSLC consistent numerical schemes. As usual, an 

explicit conservative numerical scheme is defined by: 

where A = (At ,Az)  denotes the time-and space steps, ur is an approximation 

to u(nAt ,  i A z )  and is the numerical flux satisfying the usual requirements 

f,++(u;+k, ..., U;-k+l)  is a Lipschitz function of 2k variables with 
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Let us  introduce: 

(2 .2)  
u;+'+l - us 

A X  )+  p n  = p i  = sup( 
i 

DEFINITION. A numerical scheme is said to be OSLC (respectively weakly 

OSLC) consistent i f  

(2.3) p z  5 (p(u(0,  a ) ) - '  + anat ) - '  

respectively: 

(2.4) 

Remark: Conditions 

(1.10). 

2.3) and (2.4) clearly are discrete versions of (1.9) and 

We have the following result: 

PROPOSITION 2. For the periodic boundary initial value problem, he  approx- 

imate solutions converge t o  the correct entropy solution, if either (i) the scheme is  

OSLC consistent, the initial condition has a finite number of increasing jumps, and 

the propagation speed of the scheme stays uniformly bounded; or (ii) the scheme is 

weakly OSLC and  the semi-norm of the inital d a t a  p(u(0, .)) is finite. 

Basically the proof follows from the fact that the OSLC condition enforces both 

entropy consistency and total variation boundedness. Technical details are given in 

Appendix 1. 

Remark. The same result holds for the Cauchy problem when the initial value 

v(O, x )  is constant for large values of 1x1. 

I 
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111. OSLC consistency of some first order accurate schemes. Properties 

(2.3) have been obtained in [4, 7, 121 for the Godunov and the Lax-Friedrichs 

scheme. It is unclear, to the best of our knowledge, whether or not this property 

holds for any monotone scheme (or more generally E-scheme, as defined in [8]) It is 

also clear that the Engquist-Osher scheme is OSLC consistent (as a matter of fact, 

the EO scheme is the discrete version of the transport-collapse method described 

in 121, which is clearly OSLC consistent). A more recent result involves the Roe 

scheme (31: 

PROPOSITION 3. [3]. The Roe scheme is weakly OSLC consistent. When the 

initial condition satisfies p(u(0,  e ) )  < +a, in particular, when it is smooth, then 

the approximate solutions converge t o  the correct physical solution. 

TI:!s is a little surprising, since the Roe scheme is usually quoted to  be entropy 

inconskent! As a matter of fact, the Roe scheme does not violate the entropy 

condition, provided the semi-norm of the initial data, p(u(0,  a ) )  is finite. Otherwise, 

in particular when the initial data has increasing jumps, the entropy condition can 

be violated, which explains the apparent contradiction. 

IV. MUSCL schemes and the OSLC. A priori, it is unclear whether the 

OSLC is compatible with second, or higher, order accuracy. For example, the E- 

condition, introduced in [8] to  enforce both entropy consistency and total variation 

boundedness, for any kind of scalar conservation laws (not necessarily convex), is 

known to be only compatible with 1st order accuracy [8]. An appealing framework 

in which to discuss higher order accurate schemes, is the one introduced by Van 

Leer [13] with his MUSCL schemes, a generalization of Godunov’s ideas. In a rather 

abstract way, a MUSCL scheme can be described in terms of the exact evolution (or 

solution) operator (Et t 2 0 )  associated with (1.2) and a projection operator PA% 
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that transforms any given function V ( T )  into a cell wise polynomial approximation 

Phzv(x), in such a way that, in each cell, the mean value is preserved: 

where 

. 1  v; = - v ( x ) d x  and xi-+ = (z - - ) A T .  2 
A x  

The numerical scheme is then defined by: 

(4.3) us = - /'i't un(x)dx, 
=i-  1 

Ax 

where the function u n ( x )  is given by: 

The Godunov scheme corresponds to the simplest choice of the projection operator 

PAX: 

P ~ ~ v ( x )  = v i ,  for X ; - A  < x < xi++, where v; is given by (4.2). 
2 

This scheme uses piecewise constant approximations and is only first order 

accurate. Therefore Van Leer's idea was to increase the order of accuracy by using 

polynomial approximations of higher order, when choosing  PA^. 

In order to keep stability and avoid spurious oscillations, PhX is usually required 

not to increase the total variation: 

Van Leer found a second order operator P A z ,  using piecewise linear approxi- 

mations and still compatible with (4 .6) .  In each cell, 

I 
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and the numerical slope s i  is given by 

with 
1 i f a , b > O  

0 otherwise 
$ ( a , b )  = minmod(a,b) = ~ m i n { ~ a ~ , ~ b ~ } , ~ =  -1 if a , b  < 0 

Entropy consistency of the resulting scheme is a priori unclear and was proved 

in [9] (for the method of lines, i.e. the At - 0 limit case) and in [lo] (provided 

further minor restrictions are added). This scheme is not OSLC consistent,, mainly 

because the corresponding projection operator may increase the one-sided Lipschitz 

semi-norm p .  Conversely we have: 

PROPOSITION 4. A MUSCL scheme designed in such a way that: 

is automatically OSLC and therefore convergent. 

Proof. The proof is based on the fact that the exact evolution operator Et 

satisfies: 

as a consequence of (1.9). 

Therefore, when (4.10) holds, we get: 

p(u") = ~(EA~PA~U"-') by definition (4.4)) 

5 (p(PAzun-')-' + aAt)- '  (by (4.11)), 

5 (p(u"-')-' +&At)- '  (by (4.10)), 

- < e . .  5 (p(u(0;  - ) ) - I  + anAt)- '  (by induction). 
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Then, since, for each i, 

a= ? P ( X C +  ,h + s) - u"(xc-+ + s) 
ds by definition (4.3)) 

A X  A X  
u;+l - u; - - 

A x  

5 p(un)  (by definition of p ) ,  

it follows: 

(4.12) 

which is exactly the discrete OSLC (2.3).  This completes the proof. 

V. A fully second order OSLC consistent .cVliSC,'L scheme. Condition (4 .10)  is 

not satisfied by the classical MUSCL scheme corresponding to (4.7.  8, 9) .  Ncver- 

t heless, 

PROPOSITION 5. The AlC'SCL scheme defined by (4.7, t l )  and: 

is f u l l y  second order accurate. satisfies (4.10), therefor6 is OSLC' consistent n n d  

convergent. 

Proof. Let us first, prove (4.10).  We have to show, that for any x and y, 2 # y, 

we have 

(5.2) 

Because of definition (4 .7) ,  it is enough to check both 

hold for each i. [In other words, all discontinuities are decreasing and, in each cell. 

the slope is bounded from above by p (  v)]. 
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Let us check (5 .3) .  We have (by definitions (4.8). and (5 .1))  

i 
(by definition (4.2)) 

5 ,ax( vix) - ’(’)) 5 p(v) (by definition 
X f Y  2 - Y  

Thus  (5.3) is proven. Let us  now look at (5 .4) .  

1.1) of p ) .  

We have 

Ax Ax 
6i++ = ( V i + l  - - S i +  1 ) - ( V i  + ’ 2 s ’ )  (by definition (4.8)) 

2 

Thus 

and therefore: 

which enforces (5 .4) .  This achieves the proof of (5.3-4) and therefore (4.10). So, 

the scheme is OSLC consistent. Let us now prove it is also second order accurate. 

To achieve that we shall prove: 

for smooth functions u(x) 

We recall 
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where 

v; = - /'i+t u ( x ) d x  
=i- 3 Ax 

and s; is defined by (4.8), (5.1). 

F'rom the divergence theorem, this amounts to showing that: 

where u ( z , t )  and u A ( z , t )  are the solutions to (1.2) with initial data u(x) and ~ ( x )  

respectively. 

This follows, if in each cell (2,- t ,  xi++): 

(5.8a) U(Z) - V ( Z )  = c (z , z ; ) (Az)~  + O ( A Z ) ~  

with 

(5.8b) Ic(z ,  z;) - C(Z - AX, ~ ; - 1 ) 1  5 K A x .  

But 

1 =i++ 
.(x) - V(.)  = -/ [u(t) - u ( y ) ] d y  - (x - 2;)s; 

=i+ 
Ax 

(2- 1 - - ( A ~ ) ~ ] ~ z z ( z i )  + ~ ( A z ) '  
2 24 

= (z - Z;)['uz(.;) - S i ]  + [ 
Thus we must merely show: 

but a simple calculation shows that 

1 
2 

(5.10) u,(z;) - S; = - - A z ~ u ~ ~ ( Y ; ) ~  + O(Az)' 
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and we are finished. 

Remark. We do not recommend this convergent, fully second order scheme 

for practical calculations when shocks develop, because the limiter defined in (5.1) 

permits undershoots. This limiter agrees with the usual minmod limiter when a 

and b are both negative. Otherwise large jumps in the piecewise linear interpolant 

can be created and the differential equation solution operator may take some time 

to dissipate the resulting wiggles. See the calculations displayed in Section X below. 

For what we believe to be the state-of-the-art in practical non-oscillatory high 

order accurate shock capturing algorithms, see [GI. 

VI. A OSLC consistent method oflines and o second order order convergent Roe 

scheme. A MUSCL scheme as described above is not a practical scheme, becar r 

it involves the exact computation of ( l . 2 ) ,  for 0 5 t 5 At, when the initial value : >  

a piecewise polynomial function. This task is, in general, impossible (except whcn 

the initial value is piecewise constant, as for the Godunov scheme). Actually, i'cbr 

schemes such as the ones described in Section IV (through definitions (4 .7-8) )  it is 

well known, that it is enough to know the exact solution only for x = x,++ and 

0 5 t 5 At. This can be obtained through convenient approximations up to any 

desired accuracy [l], (51. 

A different approach consists of considering the semi-discrete scheme obtained 

when At --+ 0 ( A x  being fixed), the so-called method of lines. This leads to  a 

stiff system of ordinary differential equations. Then one's favorite ODE solver can 

be used to get a fully discrete scheme. The main advantage of this approach is 

the simplicity of the numerical expressions involved in the method of lines. As a 

matter of fact, the method of lines corresponding to any MUSCL scheme of the 
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form (4.7-8), can be written as follows (see [9]) 

where h,.z, ) is the Godunov flux associated with f :  

(6.3) h ( a ,  b )  = h ~ ~ d ( a ,  b )  = E O<s<l min ~ f ( a  + s(b - a ) )  where E = sign(b - a )  

In the special case of the OSLC consistent scheme described as above, we have 

(because of (4.8), (5.1)) 

Since the original scheme is OSLC consistent, its semi-discrete version is also OSLC 

consistent in the following sense: 

and therefore is fully entropy consistent. In the other hand, we have seen that the 

OSLC enforces: 

(there is no increasing discontinuity in the piecewise linear approximations). 

Thus the Godunov flux h G o d ( a ,  b )  is only used when the entries a,  b satisfies 

a 2 b. But, we have the rather obvious result: 

LEMMA 2. Let f be a convex f lux ,  h G 0 d ( a ,  b )  the Godunov flux and hnoe(U,  b )  

the Roe flux: 

t 
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Then for a 2 b, hGod(u, b )  = hRoe(u ,  b )  

Consequently, the OSLC consistent method of lines (6.1), (6.2), can be seen as 

the second order accurate MUSCL version of the Roe scheme, provided (6.4) is used 

to define the numerical slopes. This result is quite surprising since, as it has been 

often noted, the first order accurate Roe scheme is not (fully) entropy consistent. 

PROPOSITION 6. The semi-discrete second order MUSCL Roe scheme, d e -  

fined by (6.4), is (strongly) OSLC consistent and therefore fully entropy consistent. 

VII. The Modified equation. It was pointed out to us  by E. Harabetian, that, 

the modified equation corresponding to our new scheme is of interest for the fol- 

lowing reason: On one hand, since the scheme is fully second order accurate, the 

perburbation term in the modified equation involves a third order derivative of the 

solution and therefore looks like a dispersive term (as in the KDV equation). On 

the other hand, since the OSLC is enforced, the perturbation term does not create 

wiggles (as in the KDV equation). After rather obvious computations, it turns out 

that: 

PROPOSITION 7. The modified equation associated with the second order Roe 

MUSCL scheme (6.1), (6.2), (6.4) is: 

The study of (7.1), for 6 > 0 fixed, is in our opinion an interesting new open 

problem. Formally the solutions still satisfy the OSLC (1.9). But existence and 

uniqueness of solutions to (7.1) remain to be investigated. 
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They should be considered as limits of the smooth solutions of the fourth order 

parabolic equation: 

A new entropy condition presumably follows from: 

(7.3) uzz has only increasing jumps. 

So we have the following: 

Conjecture. At least for smooth initial value, the Cauchy problem for (7.1) 

admits a unique solution u( t ,  2) such that: 

ii) ~ ~ ~ ~ ( t , z )  2 7 > -00, a.e. 

Moreover, u ( t ,  2) satisfies the OSLC (1-9). 

This conjecture can be extended to: 

(7.4) ut + f(+ - g(u22)z = 0 

for any concave function g (in (7 .1) ,  g(w) = - 1 ~ 1 )  

Existence of travelling waves for (7 .  l ) ,  or (7 .4) ,  is a more feasible result, and is 

now under investigation. 

VIII. Discretization of the modified equation. The modified equation (7 .1)  , and 

more generally equation (7 .4) ,  can be (semi-)discretized as follows. Let us define a 
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(first order) numerical flux Si++ = g(wi,  wi+l) for the concave function g .  It could 

be the Godunov flux: 

The E.O. flux (assuming g(0) = g'(0) = 0)  

or the Lax Friedrichs flux of either form: 

where the constant X satisfies : X 2 maxIg'(u)I 

Then, a method of lines approach can be designed for (7.4) 

) - 6 g ( w ,  W i + l ) ]  = 0 
d u i  'ui + %+l AT- + A- [f( d t  

A fully discrete scheme can be designed by replacing by the Euler forward 

finite difference: 

Then we have, in the case g ( w )  = - 1 ~ 1 .  
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PROPOSITION 8 .  Scheme ( 8 . 6 )  satisfies the weak OSLC (2.3) under the sfa- 

bilit y con dit ion: 

The proof is given in Appendix 2, in the case when the EO flux is used. 

As a Consequence, when 6 = O(Axa),  (8.6) is a new OSLC consistent scheme 

for the conservation law (1 .2) .  By a standard truncation analysis, this scheme is 

second order accurate in space (first order in time). Condition (8.7) is, then, a 

standard CFL condition. 

IX. Numerical results. Let us consider the Burgers equation: 

wi th  initial conditions: 

1 i f O < x < 4  
- 1  otherwise 

The solution at time t = 4 has  been calculat,ed exactly (Figure l ) ,  by using 

Van Leer’s method (minmod slope limiter, Figure a ) ,  or its “superbee” variant [ l l ]  

of (Figure 3) ,  and finally the OSLC consistent scheme described above (Figure 4 ) .  

In each case, the time step was At = 0.04 (25 time steps have been used), the mesh 

width Ax = 0.2. 

We see the excessive compression of the rarefaction wave using superbee and 

the expected undershoot at rarefactions usiiig OSLC. 

Next we considered a linear equation 

(9.3) ut + u, = 0 
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with 

(9.4) 

= O  

We graph the solution as it advances one full period. 

Figure 5 shows the results using the minmod limiter, Figure 6 uses a compres- 

sive almost 3rd order TVD scheme devised in 1141, and Figure 7 uses the OSLC 

scheme. The undershoot in this linear problem is more pronounced, its expected. 
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Appendix 1. (proof Gf Proposition 2) 

Let uo(z)  be a piecewise smooth function defined for x E [O: L ]  and L-periodic. 

Let u s  denote by N the number of cells in such a way that: 

( A l . l )  L = K A x  

uo has a finite number of discontinuity points &, < 
introduce 

< c2 < , . .  < &,. Let US 

which is a finite constant (even if p(u0)  = +m). Assuming the propagation speed 

of the scheme to  be uniformly bounded by C, let u s  define: 

( A 1 . 3 )  I, = { i  = I ,  ...! iV; dist(iAx, 2) 5 CnAt + AX) 

- where z = ( € 0 ,  (1. ..., &,). Clearly, the values .u: and u : + ~  do not depend on the 

values of uo around Z if 2 $! Z,,. Therefore, using the OSLC consistency of the 

scheme, we get: 

( A l . l )  
u;+l -us 5 p*(uo)  for i 4 I,, 

A".  
LlL 

On the other hand, w e  always have; 

u;+, - ur 
Ax 

since the scheme is  OSLC consistent. 

Thus we have: 

1 
5 -  a n a t '  

(A1.6)  
(anat)-'  if i E z,, 

if i 4 Z,, u:+~ - u: 5 AxM;, where h.1: = 
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let us now estimate the total variation at time nAt. 

(A1.7) TVn = IuF+1-47 
i = O , . .  . , N - 1 

We have: 

and, then (by (A1.6)) 

The second term of the RHS vanishes because of the periodic boundary conditions. 

Thus: 

(A1.8) 

by definition (A1.6). 

Clearly, by definition (A1.3), we have: 

(A1.9) CnAt 
lInl I + 1  

Therefore: 

and thus: 

( A l . l l )  

since NAx = L. 

Assuming Ax and At to be of the same order of magnitude, it  follows that TCL 

is uniformly bounded. 

Thus, the scheme is total variation stable. Since it is also entropy consistent,, 

the convergence the unique entropy solution follows through standard arguments. 

This completes the proof of Proposition 2. 
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Append ix  2 (Proof of Proposition 8) 

Let us consider scheme (8.6) in the case when 

(A2.1) g(w) = -1wl = -(to)+ - (-tu)+ (with a+ = max(a,O)) 

and the E.O. flux is used: 

We get 

1 1 us + U?+l 
(A2.3) 0 = -(us+' At - u s )  + -A-(f(  Ax 2 ) ++:+,)+ ++w:)+) 

Let us introduce: 

1 n  (A2.4) P,",* = &&.+l - UY) 

we have (by definition (8.5)): 

n w; = -(P,",* 1 - Pi-*) Ax 
(A2.5) 

Using (A2.3), we get: 

and 

( A 2 4  42 = (5.-((w:+.)+ + ( - W R 1 ) +  - (w;+l)+ - (-w:)+) 

Let us  rewrite 4 2 :  

(A2.9) 4 2  = +;+2)+ + (-w:+l)+ - - (4:) + 

- (w:+1)+ - (4) + + (w;) + + (-w:-l)+] 

I Thus 
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Let us now consider 41: 

(A2.11) 41 = f ( a )  - 2f(b) + f (c)  with 

(A2.12) a = ~(u?+ '  

Taylor expansions lead to: 

1 7  c = +..l 2 + up ) 1 1 
b = ,(.a + u?+~ 

where both R1 and R2 are positive, since f is convex. Therefore: 

(A2.14) dl 1 - 2b + c) 

that is, using (A2.12) and definition (8.5) 

(A2.15) 
Axa 

Hence, (A2.6-10-15) lead to: 

Let us denote 

(A2.17) A =pi++, =pi++, c = pi+ 

Using (A2.4),  (A2.16) can be rewritten: 

(A2.18) 

A X  1 U ~ + U : + ~  A n - C "  
* a x  

At Ax 2 1 2  
- Bn) 5 --f'( 

s 
4 x3 

- -[(-An + B ) +  - 2(An - B")+ - 2t-B" + Cn)+ + (B" - C")+] 
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That is: 

(A2.19) 

Bn+l 5 B"+v( An-Cn) -7[( -An+B")+ -2(An-Bn)+ -2( -Bn+Cn)++(Bn-Cn)+] 

where 

(A2.20) 
6At 
Ax3 

I ) ,  7 =  - At ur +ur+ 
Ax 

v = -- f'( 

Since: 
A" -C" = (A" - B") + (B" -C") 

= (A" - B")+ - (B" - An)+ + (B" - Cn)+ - (c - B")+, 
we deduce: 

(A2.21) B"" < B " + ( A " - B n ) + ( 2 7 + ~ ) + ( B n - A n ) + ( - 7 - v )  

and then: 

(A2.22) B"+I SB" 

Therefore i f  
1 

(A2.23) IvI 5 7 and 7 5 6 
we get: 

(A2.24) 

According to definitions (A2.17) and (A2.20), this means: 

1 
2 

Bn+l 5 B" + -[(A" - B")+ + (C" - I?")+] 5 max(An, B", Cn) 

(A2.26) 

Since (A2.25) implies the weak OSLC condition, the proof of Proposition 8 is com- 

plete. 
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F i g .  2 MUSCL S c h e m e  w i t h  
m i n m o d  L i m i t e r  
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F i g .  4 MUSCL Scheme w i t h  
OSLC L i m i t e r  
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